Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 22
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.01.30.23285174

Résumé

Ethiopia is the second most populous country in Africa and the sixth most affected by COVID-19 on the continent. Despite having experienced five infection waves, >499 000 cases, and ~7 500 COVID-19-related deaths as of January 2023, there is still no detailed genomic epidemiological report on the introduction and spread of SARS-CoV-2 in Ethiopia. In this study, we reconstructed and elucidated the COVID-19 epidemic dynamics. Specifically, we investigated the introduction, local transmission, ongoing evolution, and spread of SARS-CoV-2 during the first four infection waves using 353 high-quality near-whole genomes sampled in Ethiopia. Our results show that whereas viral introductions seeded the first wave, subsequent waves were seeded by local transmission. The B.1.480 lineage emerged in the first wave and notably remained in circulation even after the emergence of the Alpha variant. The B.1.480 was out-competed by the Delta variant. Notably, Ethiopia lack of local sequencing capacity was further limited by sporadic, uneven, and insufficient sampling that limited the incorporation of genomic epidemiology in the epidemic public health response in Ethiopia. These results highlight Ethiopia role in SARS-CoV-2 dissemination and the urgent need for balanced, near-real-time genomic sequencing.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère , Maladie d'Addison
2.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2310293.v1

Résumé

Background: Genomic surveillance, with the aid of next-generation sequencing (NGS) technologies, revolutionized the SARS-CoV-2 pandemic. Coupled with high-performance analysis software, methodologies such as the Ion Torrent S5 and Illumina MiSeq dramatically improved the genomic surveillance capacity within South Africa during the height of the pandemic. Using de-identified remnant samples collected from Eastern Cape and analysis software, Genome Detective and NextClade, we compared the sequencing process, genomic coverage, quantification of mutations, and clade classification from sequence data generated by these two common “benchtop” NGS platforms. Results: Sequence data analysis revealed success rates of 175/183 (96%) and 172/183 (94%) on the Ion Torrent S5 and Illumina MiSeq, respectively. Internal quality metrics were assessed in terms of genomic coverage (>80%) and the number of mutations identified (<100). A greater number of higher-genomic coverage sequences were generated on the Ion Torrent S5 (99%) than on the Illumina MiSeq (80%) and <100 mutations was obtained by both platforms. Ion Torrent S5 generated high coverage sequences from samples having a broader range of viral loads (VL) compared to the Illumina MiSeq, which was less successful in sequencing samples with lower viral loads. Clade assignments were comparable across platforms which accurately differentiated between Beta (<45%) and Delta (≤30%) VOCs. A disparity in clade assignment was observed in <10% of sequences due to poor coverage obtained on the Illumina MiSeq, followed by a failure rate of ≤6% across the two platforms. Manual library preparation found both methods similar in terms of sample processing, handling of larger sample quantities, and clade assignment for SARS-CoV-2. Variability between the Ion Torrent S5 and Illumina MiSeq was observed in sequencing run duration (3,5 hrs vs 36 hrs), sequencing process (semi-automation vs manual), genomic coverage (99% vs 80%), and viral load requirements (broad range vs high VL). Conclusion: The Illumina MiSeq and Ion Torrent S5 are both reliable platforms capable of performing WGS with the use of amplicons and providing specific, accurate, and high throughput analysis of the SARS-CoV-2 whole viral genomes. Both sequencing platforms are feasible platforms for the genomic surveillance of SARS-CoV-2, each with its specific advantages and trade-offs.

3.
authorea preprints; 2022.
Preprint Dans Anglais | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.166305249.90395426.v1

Résumé

Background: Intra-host diversity studies are used to characterise mutational heterogeneity of SARS-CoV-2 infections to understand the impact of virus-host adaptations. This study investigated the frequency and diversity of the spike (S) protein mutations within SARS-CoV-2 infected South African individuals. Methods Single nucleotide polymorphism (SNP) assays and whole genome sequencing were performed on SARS-CoV-2 positive samples. Allele frequency (AF) was determined using TaqMan Genotyper software for SNP analysis and galaxy.eu for analysis of FASTQ reads. Results The SNP assays identified 5.3% (50/948) Delta cases with heterogeneity at delY144 (4%; 2/50), E484Q (6%; 3/50), N501Y (2%; 1/50) and P681H (88%; 44/50). Sequencing identified 9% (210/2381) cases with Beta, Delta, Omicron BA.1, BA.2.15, and BA.4 lineages with heterogeneity in the S protein. Heterogeneity was primarily identified at positions 19 (1.4%) with T19IR (AF 0.2-0.7), 371 (92.3%) with S371FP (AF 0.1-1.0), and 484 (1.9%) with E484AK (0.2-0.7), E484AQ (AF 0.4-0.5) and E484KQ (AF 0.1-0.4). Conclusion Mutations at heterozygous amino acid positions 19, 371 and 484 reduce recognition of neutralising antibodies, however the impact of the multiple substitutions at the same position is unknown. Therefore, we hypothesise that intra-host SARS-CoV-2 quasispecies with heterogeneity in the S protein facilitate competitive advantage of variants that can completely/partially evade host’s natural and vaccine-induced immune responses.


Sujets)
COVID-19
4.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.07.18.22277743

Résumé

In this South African phase 1/2b study, we demonstrated vaccine efficacy (VE) of two doses of AZD1222 for asymptomatic and symptomatic SARS-CoV-2 infection: 90.6% against wild-type and 77.1% against the Delta variant [≥]9 months after vaccination. VE against infection with the Beta variant, which preceded circulation of Delta, was 6.7%. Clinical trial identifierCT.gov NCT04444674


Sujets)
COVID-19
5.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.05.01.22274406

Résumé

South Africa's fourth COVID-19 wave was driven predominantly by three lineages (BA.1, BA.2 and BA.3) of the SARS-CoV-2 Omicron variant of concern. We have now identified two new lineages, BA.4 and BA.5. The spike proteins of BA.4 and BA.5 are identical, and comparable to BA.2 except for the addition of 69-70del, L452R, F486V and the wild type amino acid at Q493. The 69-70 deletion in spike allows these lineages to be identified by the proxy marker of S-gene target failure with the TaqPath COVID-19 qPCR assay. BA.4 and BA.5 have rapidly replaced BA.2, reaching more than 50% of sequenced cases in South Africa from the first week of April 2022 onwards. Using a multinomial logistic regression model, we estimate growth advantages for BA.4 and BA.5 of 0.08 (95% CI: 0.07 - 0.09) and 0.12 (95% CI: 0.09 - 0.15) per day respectively over BA.2 in South Africa.


Sujets)
COVID-19
6.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.04.29.22274477

Résumé

The SARS-CoV-2 Omicron (B.1.1.529) variant first emerged as the BA.1 sub-lineage, with extensive escape from neutralizing immunity elicited by previous infection with other variants, vaccines, or combinations of both. Two new sub-lineages, BA.4 and BA.5, are now emerging in South Africa with changes relative to BA.1, including L452R and F486V mutations in the spike receptor binding domain. We isolated live BA.4 and BA.5 viruses and tested them against neutralizing immunity elicited to BA.1 infection in participants who were Omicron/BA.1 infected but unvaccinated (n=24) and participants vaccinated with Pfizer BNT162b2 or Johnson and Johnson Ad26.CoV.2S with breakthrough Omicron/BA.1 infection (n=15). In unvaccinated individuals, FRNT50, the inverse of the dilution for 50% neutralization, declined from 275 for BA.1 to 36 for BA.4 and 37 for BA.5, a 7.6 and 7.5-fold drop, respectively. In vaccinated BA.1 breakthroughs, FRNT50 declined from 507 for BA.1 to 158 for BA.4 (3.2-fold) and 198 for BA.5 (2.6-fold). Absolute BA.4 and BA.5 neutralization levels were about 5-fold higher in this group versus unvaccinated BA.1 infected participants. The observed escape of BA.4 and BA.5 from BA.1 elicited immunity is more moderate than of BA.1 against previous immunity. However, the low absolute neutralization levels for BA.4 and BA.5, particularly in the unvaccinated group, are unlikely to protect well against symptomatic infection. This may indicate that, based on neutralization escape, BA.4 and BA.5 have potential to result in a new infection wave.

7.
Houriiyah Tegally; James E. San; Matthew Cotten; Bryan Tegomoh; Gerald Mboowa; Darren P. Martin; Cheryl Baxter; Monika Moir; Arnold Lambisia; Amadou Diallo; Daniel G. Amoako; Moussa M. Diagne; Abay Sisay; Abdel-Rahman N. Zekri; Abdelhamid Barakat; Abdou Salam Gueye; Abdoul K. Sangare; Abdoul-Salam Ouedraogo; Abdourahmane SOW; Abdualmoniem O. Musa; Abdul K. Sesay; Adamou LAGARE; Adedotun-Sulaiman Kemi; Aden Elmi Abar; Adeniji A. Johnson; Adeola Fowotade; Adewumi M. Olubusuyi; Adeyemi O. Oluwapelumi; Adrienne A. Amuri; Agnes Juru; Ahmad Mabrouk Ramadan; Ahmed Kandeil; Ahmed Mostafa; Ahmed Rebai; Ahmed Sayed; Akano Kazeem; Aladje Balde; Alan Christoffels; Alexander J. Trotter; Allan Campbell; Alpha Kabinet KEITA; Amadou Kone; Amal Bouzid; Amal Souissi; Ambrose Agweyu; Ana V. Gutierrez; Andrew J. Page; Anges Yadouleton; Anika Vinze; Anise N. Happi; Anissa Chouikha; Arash Iranzadeh; Arisha Maharaj; Armel Landry Batchi-Bouyou; Arshad Ismail; Augustina Sylverken; Augustine Goba; Ayoade Femi; Ayotunde Elijah Sijuwola; Azeddine Ibrahimi; Baba Marycelin; Babatunde Lawal Salako; Bamidele S. Oderinde; Bankole Bolajoko; Beatrice Dhaala; Belinda L. Herring; Benjamin Tsofa; Bernard Mvula; Berthe-Marie Njanpop-Lafourcade; Blessing T. Marondera; Bouh Abdi KHAIREH; Bourema Kouriba; Bright Adu; Brigitte Pool; Bronwyn McInnis; Cara Brook; Carolyn Williamson; Catherine Anscombe; Catherine B. Pratt; Cathrine Scheepers; Chantal G. Akoua-Koffi; Charles N. Agoti; Cheikh Loucoubar; Chika Kingsley Onwuamah; Chikwe Ihekweazu; Christian Noel MALAKA; Christophe Peyrefitte; Chukwuma Ewean Omoruyi; Clotaire Donatien Rafai; Collins M. Morang'a; D. James Nokes; Daniel Bugembe Lule; Daniel J. Bridges; Daniel Mukadi-Bamuleka; Danny Park; David Baker; Deelan Doolabh; Deogratius Ssemwanga; Derek Tshiabuila; Diarra Bassirou; Dominic S.Y. Amuzu; Dominique Goedhals; Donald S. Grant; Donwilliams O. Omuoyo; Dorcas Maruapula; Dorcas Waruguru Wanjohi; Ebenezer Foster-Nyarko; Eddy K. Lusamaki; Edgar Simulundu; Edidah M. Ong'era; Edith N. Ngabana; Edward O. Abworo; Edward Otieno; Edwin Shumba; Edwine Barasa; EL BARA AHMED; Elmostafa EL FAHIME; Emmanuel Lokilo; Enatha Mukantwari; Erameh Cyril; Eromon Philomena; Essia Belarbi; Etienne Simon-Loriere; Etile A. Anoh; Fabian Leendertz; Fahn M. Taweh; Fares Wasfi; Fatma Abdelmoula; Faustinos T. Takawira; Fawzi Derrar; Fehintola V Ajogbasile; Florette Treurnicht; Folarin Onikepe; Francine Ntoumi; Francisca M. Muyembe; FRANCISCO NGIAMBUDULU; Frank Edgard ZONGO Ragomzingba; Fred Athanasius DRATIBI; Fred-Akintunwa Iyanu; Gabriel K. Mbunsu; Gaetan Thilliez; Gemma L. Kay; George O. Akpede; George E Uwem; Gert van Zyl; Gordon A. Awandare; Grit Schubert; Gugu P. Maphalala; Hafaliana C. Ranaivoson; Hajar Lemriss; Hannah E Omunakwe; Harris Onywera; Haruka Abe; HELA KARRAY; Hellen Nansumba; Henda Triki; Herve Alberic ADJE KADJO; Hesham Elgahzaly; Hlanai Gumbo; HOTA mathieu; Hugo Kavunga-Membo; Ibtihel Smeti; Idowu B. Olawoye; Ifedayo Adetifa; Ikponmwosa Odia; Ilhem Boutiba-Ben Boubaker; Isaac Ssewanyana; Isatta Wurie; Iyaloo S Konstantinus; Jacqueline Wemboo Afiwa Halatoko; James Ayei; Janaki Sonoo; Jean Bernard LEKANA-DOUKI; Jean-Claude C. Makangara; Jean-Jacques M. Tamfum; Jean-Michel Heraud; Jeffrey G. Shaffer; Jennifer Giandhari; Jennifer Musyoki; Jessica N. Uwanibe; Jinal N. Bhiman; Jiro Yasuda; Joana Morais; Joana Q. Mends; Jocelyn Kiconco; John Demby Sandi; John Huddleston; John Kofi Odoom; John M. Morobe; John O. Gyapong; John T. Kayiwa; Johnson C. Okolie; Joicymara Santos Xavier; Jones Gyamfi; Joseph Humphrey Kofi Bonney; Joseph Nyandwi; Josie Everatt; Jouali Farah; Joweria Nakaseegu; Joyce M. Ngoi; Joyce Namulondo; Judith U. Oguzie; Julia C. Andeko; Julius J. Lutwama; Justin O'Grady; Katherine J Siddle; Kathleen Victoir; Kayode T. Adeyemi; Kefentse A. Tumedi; Kevin Sanders Carvalho; Khadija Said Mohammed; Kunda G. Musonda; Kwabena O. Duedu; Lahcen Belyamani; Lamia Fki-Berrajah; Lavanya Singh; Leon Biscornet; Leonardo de Oliveira Martins; Lucious Chabuka; Luicer Olubayo; Lul Lojok Deng; Lynette Isabella Ochola-Oyier; Madisa Mine; Magalutcheemee Ramuth; Maha Mastouri; Mahmoud ElHefnawi; Maimouna Mbanne; Maitshwarelo I. Matsheka; Malebogo Kebabonye; Mamadou Diop; Mambu Momoh; Maria da Luz Lima Mendonca; Marietjie Venter; Marietou F Paye; Martin Faye; Martin M. Nyaga; Mathabo Mareka; Matoke-Muhia Damaris; Maureen W. Mburu; Maximillian Mpina; Claujens Chastel MFOUTOU MAPANGUY; Michael Owusu; Michael R. Wiley; Mirabeau Youtchou Tatfeng; Mitoha Ondo'o Ayekaba; Mohamed Abouelhoda; Mohamed Amine Beloufa; Mohamed G Seadawy; Mohamed K. Khalifa; Mohammed Koussai DELLAGI; Mooko Marethabile Matobo; Mouhamed Kane; Mouna Ouadghiri; Mounerou Salou; Mphaphi B. Mbulawa; Mudashiru Femi Saibu; Mulenga Mwenda; My V.T. Phan; Nabil Abid; Nadia Touil; Nadine Rujeni; Nalia Ismael; Ndeye Marieme Top; Ndongo Dia; Nedio Mabunda; Nei-yuan Hsiao; Nelson Borico Silochi; Ngonda Saasa; Nicholas Bbosa; Nickson Murunga; Nicksy Gumede; Nicole Wolter; Nikita Sitharam; Nnaemeka Ndodo; Nnennaya A. Ajayi; Noel Tordo; Nokuzola Mbhele; Norosoa H Razanajatovo; Nosamiefan Iguosadolo; Nwando Mba; Ojide C. Kingsley; Okogbenin Sylvanus; Okokhere Peter; Oladiji Femi; Olumade Testimony; Olusola Akinola Ogunsanya; Oluwatosin Fakayode; Onwe E. Ogah; Ousmane Faye; Pamela Smith-Lawrence; Pascale Ondoa; Patrice Combe; Patricia Nabisubi; Patrick Semanda; Paul E. Oluniyi; Paulo Arnaldo; Peter Kojo Quashie; Philip Bejon; Philippe Dussart; Phillip A. Bester; Placide K. Mbala; Pontiano Kaleebu; Priscilla Abechi; Rabeh El-Shesheny; Rageema Joseph; Ramy Karam Aziz; Rene Ghislain Essomba; Reuben Ayivor-Djanie; Richard Njouom; Richard O. Phillips; Richmond Gorman; Robert A. Kingsley; Rosemary Audu; Rosina A.A. Carr; Saad El Kabbaj; Saba Gargouri; Saber Masmoudi; Safietou Sankhe; Sahra Isse Mohamed; Salma MHALLA; Salome Hosch; Samar Kamal Kassim; Samar Metha; Sameh Trabelsi; Sanaa Lemriss; Sara Hassan Agwa; Sarah Wambui Mwangi; Seydou Doumbia; Sheila Makiala-Mandanda; Sherihane Aryeetey; Shymaa S. Ahmed; SIDI MOHAMED AHMED; Siham Elhamoumi; Sikhulile Moyo; Silvia Lutucuta; Simani Gaseitsiwe; Simbirie Jalloh; Soafy Andriamandimby; Sobajo Oguntope; Solene Grayo; Sonia Lekana-Douki; Sophie Prosolek; Soumeya Ouangraoua; Stephanie van Wyk; Stephen F. Schaffner; Stephen Kanyerezi; Steve AHUKA-MUNDEKE; Steven Rudder; Sureshnee Pillay; Susan Nabadda; Sylvie Behillil; Sylvie L. Budiaki; Sylvie van der Werf; Tapfumanei Mashe; Tarik Aanniz; Thabo Mohale; Thanh Le-Viet; Thirumalaisamy P. Velavan; Tobias Schindler; Tongai Maponga; Trevor Bedford; Ugochukwu J. Anyaneji; Ugwu Chinedu; Upasana Ramphal; Vincent Enouf; Vishvanath Nene; Vivianne Gorova; Wael H. Roshdy; Wasim Abdul Karim; William K. Ampofo; Wolfgang Preiser; Wonderful T. Choga; Yahaya ALI ALI AHMED; Yajna Ramphal; Yaw Bediako; Yeshnee Naidoo; Yvan Butera; Zaydah R. de Laurent; Ahmed E.O. Ouma; Anne von Gottberg; George Githinji; Matshidiso Moeti; Oyewale Tomori; Pardis C. Sabeti; Amadou A. Sall; Samuel O. Oyola; Yenew K. Tebeje; Sofonias K. Tessema; Tulio de Oliveira; Christian Happi; Richard Lessells; John Nkengasong; Eduan Wilkinson.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.04.17.22273906

Résumé

Investment in Africa over the past year with regards to SARS-CoV-2 genotyping has led to a massive increase in the number of sequences, exceeding 100,000 genomes generated to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence within their own borders, coupled with a decrease in sequencing turnaround time. Findings from this genomic surveillance underscores the heterogeneous nature of the pandemic but we observe repeated dissemination of SARS-CoV-2 variants within the continent. Sustained investment for genomic surveillance in Africa is needed as the virus continues to evolve, particularly in the low vaccination landscape. These investments are very crucial for preparedness and response for future pathogen outbreaks.

8.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1249711.v1

Résumé

Background: Over 4 million SARS-CoV-2 genomes have been sequenced globally in the past 2 years. This has been crucial in elucidating transmission chains within communities, the development of new diagnostic methods, vaccines, and antivirals. Although several sequencing technologies have been employed, Illumina and Oxford Nanopore remain the two most commonly used platforms. The sequence quality between these two platforms warrants a comparison of the genomes produced by the two technologies. Here, we compared the sequence quality produced by the Oxford Nanopore Technology GridION and the Illumina MiSeq for 28 sequencing runs. Results: Our results show that the MiSeq had a significantly higher number of sequences classified by Nextclade as good and mediocre compared to the GridION. The MiSeq also had a significantly higher sequence coverage and mutation counts than the GridION. Conclusion: Due to the low sequence coverage, high number of indels, and sensitivity to viral load noted with the GridION when compared to MiSeq, we can conclude that the MiSeq is more favourable for genomic surveillance, as successful genomic surveillance is dependent on high quality, near-whole genome sequences.

9.
Raquel Viana; Sikhulile Moyo; Daniel Gyamfi Amoako; Houriiyah Tegally; Cathrine Scheepers; Richard J Lessells; Jennifer Giandhari; Nicole Wolter; Josie Everatt; Andrew Rambaut; Christian Althaus; Eduan Wilkinson; Adriano Mendes; Amy Strydom; Michaela Davids; Simnikiwe Mayaphi; Simani Gaseitsiwe; Wonderful T Choga; Dorcas Maruapula; Boitumelo Zuze; Botshelo Radibe; Legodile Koopile; Roger Shapiro; Shahin Lockman; Mpaphi B. Mbulawa; Thongbotho Mphoyakgosi; Pamela Smith-Lawrence; Mosepele Mosepele; Mogomotsi Matshaba; Kereng Masupu; Mohammed Chand; Charity Joseph; Lesego Kuate-Lere; Onalethatha Lesetedi-Mafoko; Kgomotso Moruisi; Lesley Scott; Wendy Stevens; Constantinos Kurt Wibmer; Anele Mnguni; Arshad Ismail; Boitshoko Mahlangu; Darren P. Martin; Verity Hill; Rachel Colquhoun; Modisa S. Motswaledi; James Emmanuel San; Noxolo Ntuli; Gerald Motsatsi; Sureshnee Pillay; Thabo Mohale; Upasana Ramphal; Yeshnee Naidoo; Naume Tebeila; Marta Giovanetti; Koleka Mlisana; Carolyn Williamson; Nei-yuan Hsiao; Nokukhanya Msomi; Kamela Mahlakwane; Susan Engelbrecht; Tongai Maponga; Wolfgang Preiser; Zinhle Makatini; Oluwakemi Laguda-Akingba; Lavanya Singh; Ugochukwu J. Anyaneji; Monika Moir; Stephanie van Wyk; Derek Tshiabuila; Yajna Ramphal; Arisha Maharaj; Sergei Pond; Alexander G Lucaci; Steven Weaver; Maciej F Boni; Koen Deforche; Kathleen Subramoney; Diana Hardie; Gert Marais; Deelan Doolabh; Rageema Joseph; Nokuzola Mbhele; Luicer Olubayo; Arash Iranzadeh; Alexander E Zarebski; Joseph Tsui; Moritz UG Kraemer; Oliver G Pybus; Dominique Goedhals; Phillip Armand Bester; Martin M Nyaga; Peter N Mwangi; Allison Glass; Florette Treurnicht; Marietjie Venter; Jinal N. Bhiman; Anne von Gottberg; Tulio de Oliveira.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.19.21268028

Résumé

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in southern Africa has been characterised by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, whilst the second and third waves were driven by the Beta and Delta variants respectively. In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng Province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, predicted to influence antibody neutralization and spike function4. Here, we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity.


Sujets)
Syndrome respiratoire aigu sévère
10.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.11.25.21266298

Résumé

Outbreaks of COVID at university campuses can spread rapidly and threaten the broader community. We describe the management of an outbreak at a Malawian university in April 2021 during Malawi's second wave. Classes were suspended following detection of infections by routine testing and campus-wide PCR mass testing was conducted. Fifty seven cases were recorded, 55 among students, two among staff. Classes resumed 28 days after suspension following two weeks without cases. Just 6.3% of full-time staff and 87.4% of outsourced staff tested while 65% of students at the main campus and 74% at the extension campus were tested. Final year students had significantly higher positivity and lower testing coverage compared to freshmen. All viruses sequenced were beta variant and at least four separate virus introductions onto campus were observed. These findings are useful for development of campus outbreak responses and indicate the need to emphasize staff, males and senior students in testing.

11.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.09.23.21264018

Résumé

The Beta variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in South Africa in late 2020 and rapidly became the dominant variant, causing over 95% of infections in the country during and after the second epidemic wave. Here we show rapid replacement of the Beta variant by the Delta variant, a highly transmissible variant of concern (VOC) that emerged in India and subsequently spread around the world. The Delta variant was imported to South Africa primarily from India, spread rapidly in large monophyletic clusters to all provinces, and became dominant within three months of introduction. This was associated with a resurgence in community transmission, leading to a third wave which was associated with a high number of deaths. We estimated a growth advantage for the Delta variant in South Africa of 0.089 (95% confidence interval [CI] 0.084-0.093) per day which corresponds to a transmission advantage of 46% (95% CI 44-48) compared to the Beta variant. These data provide additional support for the increased transmissibility of the Delta variant relative to other VOC and highlight how dynamic shifts in the distribution of variants contribute to the ongoing public health threat.


Sujets)
Infections à coronavirus
12.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.08.20.21262342

Résumé

Global genomic surveillance of SARS-CoV-2 has identified variants associated with increased transmissibility, neutralization resistance and disease severity. Here we report the emergence of the PANGO lineage C.1.2, detected at low prevalence in South Africa and eleven other countries. The emergence of C.1.2, associated with a high substitution rate, includes changes within the spike protein that have been associated with increased transmissibility or reduced neutralization sensitivity in SARS-CoV-2 VOC/VOIs. Like Beta and Delta, C.1.2 shows significantly reduced neutralization sensitivity to plasma from vaccinees and individuals infected with the ancestral D614G virus. In contrast, convalescent donors infected with either Beta or Delta showed high plasma neutralization against C.1.2. These functional data suggest that vaccine efficacy against C.1.2 will be equivalent to Beta and Delta, and that prior infection with either Beta or Delta will likely offer protection against C.1.2.

13.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.06.03.21258228

Résumé

While most people effectively clear SARS-CoV-2, there are several reports of prolonged infection in immunosuppressed individuals. Here we present a case of prolonged infection of greater than 6 months with the shedding of high titter SARS-CoV-2 in an individual with advanced HIV and antiretroviral treatment failure. Through whole-genome sequencing at multiple time points, we demonstrate the early emergence of the E484K substitution associated with escape from neutralizing antibodies, followed by other escape mutations and the N501Y substitution found in most variants of concern. This provides support to the hypothesis of intra-host evolution as one mechanism for the emergence of SARS-CoV-2 variants with immune evasion properties.


Sujets)
COVID-19 , Infections à VIH
14.
Eduan Wilkinson; Marta Giovanetti; Houriiyah Tegally; James E San; Richard Lessels; Diego Cuadros; Darren P Martin; Abdel-Rahman N Zekri; Abdoul Sangare; Abdoul Salam Ouedraogo; Abdul K Sesay; Adnene Hammami; Adrienne A Amuri; Ahmad Sayed; Ahmed Rebai; Aida Elargoubi; Alpha K Keita; Amadou A Sall; Amadou Kone; Amal Souissi; Ana V Gutierrez; Andrew Page; Arnold Lambisia; Arash Iranzadeh; Augustina Sylverken; Azeddine Ibrahimi; Bourema Kouriba; Bronwyn Kleinhans; Beatrice Dhaala; Cara Brook; Carolyn Williamson; Catherine B Pratt; Chantal G Akoua-Koffi; Charles Agoti; Collins M Moranga; James D Nokes; Daniel J Bridges; Daniel L Bugembe; Deelan Doolabh; Deogratius Ssemwanga; Derek Tshabuila; Diarra Bassirou; Dominic S.Y. Amuzu; Dominique Goedhals; Dorcas Maruapula; Edith N Ngabana; Eddy Lusamaki; Edidah Moraa; Elmostafa El Fahime; Emerald Jacob; Emmanuel Lokilo; Enatha Mukantwari; Essia Belarbi; Etienne Simon-Loriere; Etile A Anoh; Fabian Leendertz; Faida Ajili; Fares Wasfi; Faustinos T Takawira; Fawzi Derrar; Feriel Bouzid; Francisca M Muyembe; Frank Tanser; Gabriel Mbunsu; Gaetan Thilliez; Gert van Zyl; Grit Schubert; George Githinji; Gordon A Awandare; Haruka Abe; Hela H Karray; Hellen Nansumba; Hesham A Elgahzaly; Hlanai Gumbo; Ibtihel Smeti; Ikhlass B Ayed; Imed Gaaloul; Ilhem B.B. Boubaker; Inbal Gazy; Isaac Ssewanyana; Jean B Lekana-Douk; Jean-Claude C Makangara; Jean-Jacques M Tamfum; Jean M Heraud; Jeffrey G Shaffer; Jennifer Giandhari; Jingjing Li; Jiro Yasuda; Joana Q Mends; Jocelyn Kiconco; Jonathan A Edwards; John Morobe; John N Nkengasong; John Gyapong; John T Kayiwa; Jones Gyamfi; Jouali Farah; Joyce M Ngoi; Joyce Namulondo; Julia C Andeko; Julius J Lutwama; Justin O Grady; Kefenstse A Tumedi; Khadija Said; Kim Hae-Young; Kwabena O Duedu; Lahcen Belyamani; Lavanya Singh; Leonardo de O. Martins; Madisa Mine; Mahmoud el Hefnawi; Mahjoub Aouni; Maha Mastouri; Maitshwarelo I Matsheka; Malebogo Kebabonye; Manel Turki; Martin Nyaga; Matoke Damaris; Matthew Cotten; Maureen W Mburu; Maximillian Mpina; Michael R Wiley; Mohamed A Ali; Mohamed K Khalifa; Mohamed G Seadawy; Mouna Ouadghiri; Mulenga Mwenda; Mushal Allam; My V.T. Phan; Nabil Abid; Nadia Touil; Najla Kharrat; Nalia Ismael; Nedio Mabunda; Nei-yuan Hsiao; Nelson Silochi; Ngonda Saasa; Nicola Mulder; Patrice Combe; Patrick Semanda; Paul E Oluniyi; Paulo Arnaldo; Peter K Quashie; Reuben Ayivor-Djanie; Philip A Bester; Philippe Dussart; Placide K Mbala; Pontiano Kaleebu; Richard Njouom; Richmond Gorman; Robert A Kingsley; Rosina A.A. Carr; Saba Gargouri; Saber Masmoudi; Samar Kassim; Sameh Trabelsi; Sami Kammoun; Sanaa Lemriss; Sara H Agwa; Sebastien Calvignac-Spencer; Seydou Doumbia; Sheila M Madinda; Sherihane Aryeetey; Shymaa S Ahmed; Sikhulile Moyo; Simani Gaseitsiwe; Edgar Simulundu; Sonia Lekana-Douki; Soumeya Ouangraoua; Steve A Mundeke; Sumir Panji; Sureshnee Pillay; Susan Engelbrecht; Susan Nabadda; Sylvie Behillil; Sylvie van der Werf; Tarik Aanniz; Tapfumanei Mashe; Thabo Mohale; Thanh Le-Viet; Tobias Schindler; Upasana Ramphal; Magalutcheemee Ramuth; Vagner Fonseca; Vincent Enouf; Wael H Roshdy; William Ampofo; Wolfgang Preiser; Wonderful T Choga; Yaw Bediako; Yenew K. Tebeje; Yeshnee Naidoo; Zaydah de Laurent; Sofonias K Tessema; Tulio de Oliveira.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.05.12.21257080

Résumé

The progression of the SARS-CoV-2 pandemic in Africa has so far been heterogeneous and the full impact is not yet well understood. Here, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations, predominantly from Europe, which diminished following the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1 and C.1.1. Although distorted by low sampling numbers and blind-spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a breeding ground for new variants.

15.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.03.30.21254323

Résumé

At the end of 2020, the Network for Genomic Surveillance in South Africa (NGS-SA) detected a SARS-CoV-2 variant of concern (VOC) in South Africa (501Y.V2 or PANGO lineage B.1.351)1. 501Y.V2 is associated with increased transmissibility and resistance to neutralizing antibodies elicited by natural infection and vaccination2,3. 501Y.V2 has since spread to over 50 countries around the world and has contributed to a significant resurgence of the epidemic in southern Africa. In order to rapidly characterize the spread of this and other emerging VOCs and variants of interest (VOIs), NGS-SA partnered with the Africa Centres for Disease Control and Prevention and the African Society of Laboratory Medicine through the Africa Pathogen Genomics Initiative to strengthen SARS-CoV-2 genomic surveillance across the region. Here, we report the first genomic surveillance results from Angola, which has had 21 500 reported cases and around 500 deaths from COVID-19 up to March 2021 (Supplemental Fig S1). On 15 January 2021, in response to the international spread of VOCs, the government instituted compulsory rapid antigen testing of all passengers arriving at the main international airport, in addition to the existing requirement to present a negative PCR test taken within 72 hours of travel. All individuals with a positive antigen test are isolated in a government facility for a minimum of 14 days and require two negative RT-PCR tests at least 48 hours apart for de-isolation, whilst all travelers with a negative test on arrival proceed to mandatory self-quarantine for 10 days followed by a repeat test. In March 2021, we received 118 nasopharyngeal swab samples collected between June 2020 and February 2021, a number of which were from incoming air travelers (Supplemental Fig S1). From these, we produced 73 high quality genomes (>80% coverage), 14 of which were known VOCs/VOIs (seven 501Y.V2/B.1.351, six B.1.1.7, one B.1.525), 44 of which were C.16 (a common lineage circulating in Portugal), and twelve of which were other lineages (Supplemental Fig S2). In addition, we detected a new VOI in three incoming travelers from Tanzania who were tested together at the airport in mid-February. The three genomes from these passengers were almost identical and presented highly divergent sequences within the A lineage (Figure 1A & 1B). The GISAID database contains nine other sequences reported to be sampled from cases involving travel from Tanzania, two of which are basal to the three sampled in Angola (Figure 1A, Supplemental Table S1). This new VOI, temporarily designated A.VOI.V2, has 31 amino acid substitutions (11 in spike) and three deletions (all in spike) (Figure 1C & 1D). The spike mutations include three substitutions in the receptor-binding domain (R346K, T478R and E484K); five substitutions and three deletions in the N-terminal domain, some of which are within the antigenic supersite (Y144{Delta}, R246M, SYL247-249{Delta} and W258L)4; and two substitutions adjacent to the S1/S2 cleavage site (H655Y and P681H). Several of these mutations are present in other VOCs/VOIs and are evolving under positive selection.


Sujets)
Urgences , COVID-19
17.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.01.26.21250224

Résumé

New SARS-CoV-2 variants with mutations in the spike glycoprotein have arisen independently at multiple locations and may have functional significance. The combination of mutations in the 501Y.V2 variant first detected in South Africa include the N501Y, K417N, and E484K mutations in the receptor binding domain (RBD) as well as mutations in the N-terminal domain (NTD). Here we address whether the 501Y.V2 variant could escape the neutralizing antibody response elicited by natural infection with earlier variants. We were the first to outgrow two variants of 501Y.V2 from South Africa, designated 501Y.V2.HV001 and 501Y.V2.HVdF002. We examined the neutralizing effect of convalescent plasma collected from six adults hospitalized with COVID-19 using a microneutralization assay with live (authentic) virus. Whole genome sequencing of the infecting virus of the plasma donors confirmed the absence of the spike mutations which characterize 501Y.V2. We infected with 501Y.V2.HV001 and 501Y.V2.HVdF002 and compared plasma neutralization to first wave virus which contained the D614G mutation but no RBD or NTD mutations. We observed that neutralization of the 501Y.V2 variants was strongly attenuated, with IC50 6 to 200-fold higher relative to first wave virus. The degree of attenuation varied between participants and included a knockout of neutralization activity. This observation indicates that 501Y.V2 may escape the neutralizing antibody response elicited by prior natural infection. It raises a concern of potential reduced protection against re-infection and by vaccines designed to target the spike protein of earlier SARS-CoV-2 variants.


Sujets)
COVID-19
18.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.12.21.20248640

Résumé

Continued uncontrolled transmission of the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in many parts of the world is creating the conditions for significant virus evolution. Here, we describe a new SARS-CoV-2 lineage (501Y.V2) characterised by eight lineage-defining mutations in the spike protein, including three at important residues in the receptor-binding domain (K417N, E484K and N501Y) that may have functional significance. This lineage emerged in South Africa after the first epidemic wave in a severely affected metropolitan area, Nelson Mandela Bay, located on the coast of the Eastern Cape Province. This lineage spread rapidly, becoming within weeks the dominant lineage in the Eastern Cape and Western Cape Provinces. Whilst the full significance of the mutations is yet to be determined, the genomic data, showing the rapid displacement of other lineages, suggest that this lineage may be associated with increased transmissibility.

19.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.11.15.20231993

Résumé

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes acute, highly transmissible respiratory infection in both humans and wide range of animal species. Its rapid spread globally and devasting effects have resulted into a major public health emergency prompting the need for methodological interventions to understand and control its spread. In particular, The ability to effectively retrace its transmission pathways in outbreaks remains a major challenge. This is further exacerbated by our limited understanding of its underlying evolutionary mechanism. Using NGS whole-genome data, we determined whether inter- and intra-host diversity coupled with bottleneck analysis can retrace the pathway of viral transmission in two epidemiologically well characterised nosocomial outbreaks in healthcare settings supported by phylogenetic analysis. Additionally, we assessed the mutational landscape, selection pressure and diversity of the identified variants. Our findings showed evidence of intrahost variant transmission and evolution of SARS-CoV-2 after infection These observations were consistent with the results from the bottleneck analysis suggesting that certain intrahost variants in this study could have been transmitted to recipients. In both outbreaks, we observed iSNVs and SNVs shared by putative source-recipients pairs. Majority of the observed iSNVs were positioned in the S and ORF1ab region. AG, CT and TC nucleotide changes were enriched across SARS-COV-2 genome. Moreover, SARS-COV-2 genome had limited diversity in some loci while being highly conserved in others. Overall, Our findings show that the synergistic effect of combining withinhost diversity and bottleneck estimations greatly enhances resolution of transmission events in Sars-Cov-2 outbreaks. They also provide insight into the genome diversity suggesting purifying selection may be involved in the transmission. Together these results will help in developing strategies to elucidate transmission events and curtail the spread of Sars-Cov-2

20.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.10.28.20221143

Résumé

In March 2020, the first cases of COVID-19 were reported in South Africa. The epidemic spread very fast despite an early and extreme lockdown and infected over 600,000 people, by far the highest number of infections in an African country. To rapidly understand the spread of SARS-CoV-2 in South Africa, we formed the Network for Genomics Surveillance in South Africa (NGS-SA). Here, we analyze 1,365 high quality whole genomes and identify 16 new lineages of SARS-CoV-2. Most of these unique lineages have mutations that are found hardly anywhere else in the world. We also show that three lineages spread widely in South Africa and contributed to ~42% of all of the infections in the country. This included the first identified C lineage of SARS-CoV-2, C.1, which has 16 mutations as compared with the original Wuhan sequence. C.1 was the most geographically widespread lineage in South Africa, causing infections in multiple provinces and in all of the eleven districts in KwaZulu-Natal (KZN), the most sampled province. Interestingly, the first South-African specific lineage, B.1.106, which was identified in April 2020, became extinct after nosocomial outbreaks were controlled. Our findings show that genomic surveillance can be implemented on a large scale in Africa to identify and control the spread of SARS-CoV-2.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche